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Abstract. We introduce a new self avoiding walk with one step probabilities which depend 
on the local environment. As a consequence this walk is irreversible and models the growth 
process of a linear polymer in a good solvent. To calculate its properties we have performed 
exact enumerations up to 22 steps on the square lattice and on the diamond lattice. This 
gives for the critical indices the values Y = 0.68, y = 1.16 in two dimensions and U = 0.525 
and y >  1 in three dimensions. 

Recently there has been considerable interest in  a new type of self avoiding walk 
(SAW), the so-called true self avoiding walk (TSAW) (Amit et a1 1983). This walk differs 
from the usual polymer SAW in that it tries to avoid places it has visited already. The 
usual SAW is used to study the excluded-volume effects of linear polymers. The statistics 
of such a walk are then obtained by putting a new bond at the end of the chain with 
equal probability in every direction (see figure 1). If the chain, generated in this way, 
tries to visit a site for the second time, the walk is discontinued. For the TSAW, the 
probability pi  to proceed in a certain direction depends on how many times the new 
site has been visited already. This can be written as 

Here the sum runs over all nearest-neighbour (NN) sites and g is a dimensionless 
interaction energy. Although this type of walk has generated great interest amongst 
theoreticians, up to now no physical realisation for the walk has been found. The 
reason for this can be best illustrated for the g+co limit. On the square lattice this 

Figure 1. Example of a walk which is terminated. When the one-step probabilities differ 
from the SAW value llq,,, it is indicated. For the TSAW termination does not occur and 
the walk proceeds with probability a in one of the directions which have probability 0 for 
the GSAW. 
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walk has probability f if no N N  site is visited before, 4 is one N N  site is already visited 
and 1 if two N N  sites are visited before (see figure 1). The trouble starts if all three 
N N  sites are already visited, then the probability to proceed to a N N  site is a. This 
property means that the walk can travel through a densely packed cluster of occupied 
sites without losing energy. This same disadvantage, of course, also is true for 
general g. 

We introduce a new SAW which is a combination of the above described TSAW in 
the g + 03 limit and the usual SAW. For this purpose, we add the self avoiding property 
to the TSAW. That means that the walk is terminated when it reaches a configuration 
where all N N  sites are visited before (see figure 1). At this point it should be noted, 
that for this new growing SAW (GSAW) exactly the same configurations occur as for 
the usual SAW, the only differences come from the changed weight definition. Now 
the various bonds (steps) have different weights whereas for the SAW all steps carry 
the same weight. As a consequence of the dependence of the transition probabilities 
on the local environment this GSAW is irreversible, that is the local probability of a 
chain depends on the direction along the walk in which one measures (see figure 2). 
This testing of the N N  sites before a step is performed also means that the GSAW lives 
longer. The first termination occurs at the 8th step for two dimensions on the square 
lattice, while one needs 14 steps in three dimensions on the diamond lattice. 

11/21 
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Figure 2. Example of a short GSAW, which shows its irreversibility. When the one-step 
probabilities differ from f it is indicated. The numbers in brackets give the probabilities 
for the inverse direction. 

This GSAW should be able to describe the growth process of a linear polymer in a 
good solvent, provided that the relaxation of the chain is much slower than the growth 
process itself. To study this GSAW we have used an enumeration technique similar to 
the one described by Grassberger (1982) to count all possible walks on the square 
lattice and the diamond lattice up to 22 steps. From this we calculated the number of 
walks, the partition function Z (the sum over all products of the one-step probabilities 
of each configuration), the mean square end-to-end distance ( R * ( N ) )  and the fourth 
moment (R4(N) ) .  For the scaling behaviour of ( R 2 ( N ) )  we assume (Djordjevic et a1 
1983, Majid er a1 1983) 

( R 2 (  N ) )  = AN2"(  1 + BN-" + CN-'  . . .) (2) 

with a similar expression for ( R 4 ( N ) ) .  Using this we can estimate v from 

v ' ( N )  = f  In [ R 2 ( N  + i ) / R 2 (  N)]/ln [( N +i) /N] '= '  = v - & A B N - A - L C N - '  2 . . . .  (3) 

Thus a plot of v ( N )  against 1/N will give us an estimate- for v provided that the 
correction to scaling exponent A is larger than one. This is tested by plotting In1 v( N )  - 
veStl against In N where v,,, is the estimated asymptotic value. An alternative way to 
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estimate Y is given by Watts (1974) 

, = I  
= Y+(~Y-~)ABN-"+(~Y-~)CN-' . . . .  (4) 

Here the analytic correction does not vanish as wrongly assumed by Djordjevic et ul 
(1983) and Majid et ul (1983). In a similar way as for method I one gets an estimate 
for Y. However, the convergence to the asymptotic value may be different. Also from 
(4) it is clear that only when A >  1 can one expect good results from this procedure. 
The value of the correction exponent A can be estimated in a similar way as described 
for method I. The exponent y is calculated from the partition function which for a 
finite number of steps ( N )  is defined as 

N 

p (  i, C,) is the one step probability for the ith step of an N-step walk with configuration 
CN . 

For the SAW the p(i, C N )  are constant, independent of the configuration CN and 
its position i in the sequence. 

( 6 )  p (  i, C N )  = K = 1/ 40. 

Here qo equals q - 1, being the coordination number of the lattice. For the partition 
function we then have for the usual SAW 

Z( N )  = uNK N ,  (7) 
where uN denotes the number of walks of length N ( Z c ,  1 = u N ) .  

Using uN Cc K i N N y - '  for large N one can write for the usual SAW (de Gennes 1979) 

Z( N )  ot ( K /  K,) N N y - ' ,  (8) 

The value of K ,  is given by 

( K / K , ) ' =  lim Z ( N + i ) / Z ( N ) ,  
N + W  

(9) 

while the slope of a log-log plot of Z (  N + i ) /Z (  N )  against N + i /  N gives the exponent 
y -  1 .  For the GSAW we introduce ll:, p ( i ,  C N )  of ( 5 )  instead of K N  of (6 ) .  Now we 
assume the existence of a fixed point and a similar functional behaviour (8) of the 
partition function for the GSAW and calculate y and K / K ,  for the GSAW from Z ( N )  
in the above described way. Because the SAW and the GSAW are constructed from the 
same configurations but with different weights, it is plausible that this assumption is 
valid. Our results provide further justification. 

Now let us turn to the result for the two-dimensional GSAW on the square lattice. 
The extrapolations for the exponent Y are given in figure 3. To suppress the lattice 
typical odd-even fluctuations we have taken i = 2  in (3) and (4). The result from 
method I (figure 3 ( b ) )  at first glance suggests a value for v of 0.65. However, the plot 
to estimate A' does not give a very convincing straight line. Also the minimum of 
Y'( N )  around N - 12 means that the two correction terms in (3) have opposite sign. 
This cancellation still plays a role at N - 20 and makes an accurate estimate for v'( N )  
impossible. For this reason we have studied method 11. 
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Figure 3. Plots of v ( N )  by the various methods from ( R 2 ( N ) )  (x) and ( R 4 ( N ) )  ( + )  for 
d = 2. Part ( a )  gives U( N) against I /  N after method 11, part ( b )  gives v( N )  against I /  N 
after method I. 

Clearly the estimate has shifted considerably, now giving a value of v = 0.68 f 0.01. 
Here the plot of the estimate of A" does give a nice straight line with A"> 1. This 
shows that a cancellation of correction terms does not occur here. Therefore we expect 
method I1 to give more reliable results than method I in this case. The calculation of 
y and K,  appears to be much easier. From the ratio Z,+, /Z ,  for N = 20 we find 
K ,  = 2.94 by multiplying (9) with qo = 3, a value which has converged already to its 
limiting value. From the log-log plot of Z N + , / Z N  against N +2/ N we find for y the 
value 1.16*0.01, a result which also seems to have converged for N =20. 

In figure 4 we show the results for v ' ( N )  on the diamond lattice. In this case we 
have also taken i equal to 2 in (3) and (4) although the odd-even oscillations are not 
nearly as strong as on the square lattice. In contradiction to the situation on the square 
lattice there is here no problem with cancellation of correction terms. Both curves 
clearly point to a value of v = 0.525 * 0.010, a result which is confirmed by method 11. 
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Figure 4. Plot of v ( N )  against I / N  after method I for ( R 2 ( N ) )  (x)  and ( R 4 ( N ) )  ( + )  for 
the three-dimensional GSAW on the diamond lattice. 
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This is consistent with the experience for the usual SAW on the diamond lattice. There 
Monte Carlo calculations show that, even for N = 20, v displays its asymptotic value 
within an error of about one percent (Kremer et a1 1982). Also the plot to estimate 
A' gives a straight line with slope one, indicating that A > 1. In this case our results 
are accurate enough to exclude the possibility of v = 0.5, the random walk value which 
one expects to hold at the upper critical dimension, ignoring logarithmic corrections. 
Therefore, we can exclude an upper critical dimension of d , = 3 .  To investigate this 
point further we have studied the second and fourth moment assuming logarithmic 
corrections of the form 

( R ' ( N ) ) -  N(ln ~ ) " 2  (10) 
and a similar expression for (R4(N) ) .  From this we find values for a2 and a4 which 
differ by a factor of 1.4, whereas one expects them to be equal if (10) describes the 
behaviour. The calculation of ( y  - 1 )  and K ,  from enumeration results causes some 
problems, because the first walk is only terminated at N = 14. But from then on the 
partition function is decreasing steadily although at a very slow rate. As a rough 
estimate for the fixed point we give K ,  - 2.9995 but smaller than 3.0. Also the value 
of y is very hard to estimate. We give O <  ( y -  1)<0.1. To get more accurate results 
for the critical exponents and for the correction exponents one needs longer chains. 
This of course is not feasible with enumeration and one has to perform very accurate 
Monte Carlo calculations. This can be achieved by a precise sampling of chains up 
to N = 100. This work will be reported on in a subsequent paper (Kremer and Lyklema 
1984b). 

The results (see also table 1 )  show that the difference between the reversible SAW 

and the irreversible GSAW is remarkable. Although both walks are identical for all 
configurations, the difference in the one-step probabilities causes a significant change 
in their global structure and in the critical behaviour. The ability of the GSAW to look 
ahead and avoid, as far as possible, an early confinement by giving a zero weight to 
terminating N N  sites and a higher weight to escaping and consequently more dense 
paths, results in a much smaller excluded-volume effect. However, we clearly can 
exclude an upper critical dimension d ,  = 3 for GSAW, because y > 1 and v > $. Therefore 
this model can not be used to study the @-point behaviour of polymers. For the &point 
polymer one has d, = 3 and y = 1 (de Gennes (1979) and reference therein). This y = 1 
behaviour is up to now by construction only achieved for the recently introduced 
indefinitely growing SAW (IGSAW, Kremer and Lyklema 1984a). This walk, which is 
constructed in such a way that it avoids cages, still has a considerable excluded-volume 

Table 1. Best available results for the four different SAW'S including the exponents of the 
new GSAW. The exact results for the SAW in two dimensions are taken from Nienhuis 
(1982), in three dimensions the best known values are due to Le Guillou and Zinn Justin 
(1977). The results for the TSAW are from Amit et a/ (1983) and for the IGSAW from 
Kremer and Lyklema (l984a). 

~ 

SAW GSAW IGSAW TSAW 

U 314 0.68 * 0.01 0.5710.01 
Y 43/32 I .  I6 f 0.01 I 

0.588 0.525i0.010 - 
Y 1.167 > I  - 
U 
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effect in two dimensions. However, the known values of the various SAW (see table 
1) strongly suggest the possibility of v=0.5  in three dimensions for the IGSAW and 
therefore d,  = 3. I f  this is relevant for the &point polymer remains to be seen. 

Finally we want to remark that, after completion of this work, several preprints 
appeared which also study the GSAW (Hemmer and Hemmer 1984, Majid er a1 1984 
and Family 1984). The results of this work shows that the GSAW is a very interesting 
model which should be studied in more detail. 

The authors want to thank P Rujan and D W Heermann for useful discussions. 
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